Respiration and photosynthesis of bladders and leaves of aquatic utricularia species.

نویسنده

  • L Adamec
چکیده

In aquatic species of carnivorous utricularia, about 10 - 50 % of the total biomass consists of bladders. Utricularia bladders are physiologically very active organs though their chlorophyll content may greatly be reduced. To specify energetic costs of carnivory, respiration (RD) and net photosynthetic rate (PN) were compared in bladders and leaves or shoot segments of six aquatic utricularia species with differentiated (U. ochroleuca, U. intermedia, U. floridana) or non-differentiated shoots (U. vulgaris, U. australis, U. bremii) under optimum conditions (20 degrees C, [CO (2)] 0.20 mM, 400 micromol m (-2) s (-1) PAR). RD of bladders of six utricularia species (5.1 - 8.6 mmol kg (-1)(FW) h (-1)) was 75 - 200 % greater, than that in leaves in carnivorous or photosynthetic shoots (1.7 - 6.1 mmol kg (-1)(FW) h (-1)). Within individual species, this difference was statistically significant at P < 0.002 - 0.01. However, PN in photosynthetic leaves/shoots (40 - 117 mmol kg (-1)(FW) h (-1)) exceeded that in bladders (5.2 - 14.7 mmol kg (-1)(FW) h (-1)) 7 - 10 times. RD of empty bladders of U. ochroleuca was exactly the same as that in bladders containing prey. Though utricularia bladders are essential for uptake of growth limiting mineral nutrients N and P from prey as the main benefit of carnivory, the current results support previous work showing that bladder function requires greater metabolic (maintenance) cost and very low photosynthetic efficiency (great RD : PN ratio).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prey composition in the carnivorous plants Utricularia inflata and U. gibba (Lentibulariaceae) from Paria Peninsula, Venezuela.

Carnivorous aquatic plants, genus Utricularia (Lentibulariaceae), capture small aquatic organisms, such as rotifers, copepods, and cladocerans, by means of anatomical structures named bladders. The present study aimed to determine prey size and composition in U. gibba and U inflata, which were collected from a small lake and an herbaceous wetland, respectively, located in Paria Peninsula (Sucre...

متن کامل

The smallest but fastest: ecophysiological characteristics of traps of aquatic carnivorous Utricularia.

Aquatic Utricularia species usually grow in standing, nutrient-poor humic waters. They take up all necessary nutrients either directly from the water by rootless shoots or from animal prey by traps. The traps are hollow bladders, 1-6 mm long with elastic walls and have a mobile trap door. The inner part of the trap is densely lined with quadrifid and bifid glands and these are involved in the s...

متن کامل

Leaf Anatomy of Orcuttieae (poaceae: Chloridoideae): More Evidence of C4 Photosynthesis without Kranz Anatomy

C4 photosynthesis without Kranz anatomy (single-cell C4 photosynthesis) occurs in only 0.003% of known species of C4 flowering plants. To add insight into the evolution of C4 photosynthesis, we studied the tribe Orcuttieae (Poaceae: Chloridoideae), which has species that can grow under both aquatic and terrestrial conditions, and utilize single-cell C4 photosynthesis when growing submerged. Car...

متن کامل

Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.

Survival and growth of terrestrial plants is negatively affected by complete submergence. This is mainly the result of hampered gas exchange between plants and their environment, since gas diffusion is severely reduced in water compared with air, resulting in O2 deficits which limit aerobic respiration. The continuation of photosynthesis could probably alleviate submergence-stress in terrestria...

متن کامل

Nitrate Bioremoval by Phytotechnology using Utricularia aurea Collected from Eutrophic Lake of Theerthamkara, Kerala, India

The aim of this study was to compare the selected aquatic plants ability to remove nitrate from wastewater. Excess of these nutrients in water can directly affect human health (methemoglobinaemia) or indirectly through the products of secondary pollution include eutrophication. Negative impact of nutrients excess in surface water often causes the destruction of water ecosystems, and therefore, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant biology

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2006